Optimization of Enzyme-Mediated Calcite Precipitation as a Soil-Improvement Technique: The Effect of Aragonite and Gypsum on the Mechanical Properties of Treated Sand

نویسندگان

  • Heriansyah Putra
  • Hideaki Yasuhara
  • Naoki Kinoshita
  • Akira Hirata
چکیده

The effectiveness of magnesium as a substitute material in enzyme-mediated calcite precipitation was evaluated. Magnesium sulfate was added to the injecting solution composed of urea, urease, and calcium chloride. The effect of the substitution on the amount of precipitated materials was evaluated through precipitation tests. X-ray powder diffraction and scanning electron microscopy analyses were conducted to examine the mineralogical morphology of the precipitated minerals and to determine the effect of magnesium on the composition of the precipitated materials. In addition to calcite, aragonite and gypsum were formed as the precipitated materials. The effect of the presence of aragonite and gypsum, in addition to calcite, as a soil-improvement technique was evaluated through unconfined compressive strength tests. Soil specimens were prepared in polyvinyl chloride cylinders and treated with concentration-controlled solutions, which produced calcite, aragonite, and gypsum. The mineralogical analysis revealed that the low and high concentrations of magnesium sulfate effectively promoted the formation of aragonite and gypsum, respectively. The injecting solutions which produced aragonite and calcite brought about a significant improvement in soil strength. The presence of the precipitated materials, comprising 10% of the soil mass within a treated sand, generated a strength of 0.6 MPa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Magnesium as Substitute Material in Enzyme-Mediated Calcite Precipitation for Soil-Improvement Technique

The optimization of enzyme-mediated calcite precipitation was evaluated as a soil-improvement technique. In our previous works, purified urease was utilized to bio-catalyze the hydrolysis of urea, which causes the supplied Ca(2+) to precipitate with [Formula: see text] as calcium carbonate. In the present work, magnesium chloride was newly added to the injecting solutions to delay the reaction ...

متن کامل

Investigation of the effect of amount and size of gypsum particles on its performance in the improvement of saline and sodium soils

Extended abstract 1- Introduction Gypsum, sulfuric acid, and sulfur are used to improve saline and sodic soils. In some cases, animal manures are also used, which varies according to environmental conditions and soil type (Jesus et al., 2019). Industrial gypsum is often used to modify saline and sodic soils due to electrolyte maintenance, physical and hydraulic properties (Keren, 1996), low c...

متن کامل

امکان‌سنجی استفاده از دوغاب زیستی برای تثبیت ماسه های روان در مناطق کویری با رویکرد حفاظت از بقایای باستان شناسی

Archaeological sites in desert areas are at risk for destroying and reburied with sand dunes by sand storms. One of the most important issues for archaeologist and conservators in these regions are maintenance of archaeological remains, during the excavation process and after it, There are several sand dune stabilization methods such as mechanical dune stabilization, mulch or protective screen,...

متن کامل

Applicability of Natural Zeolite for NH-Forms Removal in Enzyme-Mediated Calcite Precipitation Technique

This study evaluated the applicability of natural zeolite for the removal of the NH-forms in the enzyme-mediated calcite precipitation technique. The natural zeolite of mordenite was added to prepared grouting solutions composed of urea and urease and mixed thoroughly using a rotation table for the mixing times of 0.5, 1.0, and 2.0 h. Then, the concentrations of evolving NH-forms in the solutio...

متن کامل

Cementation of Sand Soil by Microbially Induced Calcite Precipitation at Various Degrees of Saturation

4 A newly emerging microbiological soil stabilization method, known as microbially 5 induced calcite precipitation (MICP), is tested for geotechnical engineering 6 applications. MICP is a promising technique that utilizes the metabolic pathways of 7 bacteria to form calcite precipitation throughout the soil matrix, leading to an increase 8 in soil strength and stiffness. This paper investigates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017